
jInfer Runner Module Description

Michal Klempa, Mário Mikula, Robert Smetana, Michal Švirec, Matej Vitásek
Advisors: RNDr. Irena Mlýnková, Ph.D., Martin Nečaský, Ph.D.

Praha, 2011

Target audience: developers willing to extend jInfer, specifically hack (or expand) the inference process.
Responsible developer Matej Vitásek
Required tokens cz.cuni.mff.ksi.jinfer.base.interfaces.inference.IGGenerator

cz.cuni.mff.ksi.jinfer.base.interfaces.inference.SchemaGenerator

cz.cuni.mff.ksi.jinfer.base.interfaces.inference.Simplifier

org.openide.windows.IOProvider

Provided tokens none
Module dependencies Base
Public packages cz.cuni.mff.ksi.jinfer.runner

cz.cuni.mff.ksi.jinfer.runner.properties

1 Introduction
Runner it the module responsible for inference process. The fact that the inference consists of exactly 3 steps as
described in [KMS+a], is hard-wired in jInfer via this module.

2 Structure and operation
The main class responsible for the inference run is the Runner in cz.cuni.mff.ksi.jinfer.runner package. During
its construction it loads the properties of the currently running project (via the RunningProject class) to find out
which modules are selected for the inference. These modules are looked up and remembered - each new inference
run should therefore use a new instance of runner.

The only public method in Runner is, unsurprisingly, run(). This method will start the first step of the inference
process by invoking the selected IGGenerator ’s start() method, as described in [KMS+a, section 3.5.1]. Callback
methods finishedIGGenerator(), finishedSimplifier() and finishedSchemaGenerator() are responsible for in-
voking the following stages of inference, or in the latter case for presenting the resulting schema to the user and
terminating the inference process.

Invocation of every step in the process is encapsulated in a NetBeans task: this is the responsibility of runAsync()
method. First of all, this means that all the work is done in an asynchronous thread independent from the GUI. Sec-
ond, NBP presents each such task as a progressbar in the bottom right corner of the window, and allows the user
to cancel it. Should this happen, the currently running module detects this by checking for Thread.interrupted()
and responds by throwing an InterruptedException. Runner catches this exception, terminates the inference and
informs the user (interrupted() method).

Furthermore, should any unexpected exception occur while running one of the modules, this will get caught in
Runner again. Inference will be interrupted and user will be notified - this is the responsibility of unexpected()

method.

Finally, the generated schema is annotated in the end with a comment stating the current date and time, and the
modules used in the process. This is the responsibility of getCommentedSchema() method.

1



2.1 Settings
Runner has NetBeans-wide settings determining what should happen after the schema is inferred and which rule
displayer should be used. The options panel along with all the logic is in the cz.cuni.mff.ksi.jinfer.runner.

options package.

2.2 Preferences
Runner naturally has project-wide preferences for selection of inference modules. The panel and its logic is in cz.

cuni.mff.ksi.jinfer.runner.properties package.

3 Extensibility
For certain inference algorithms it might be necessary to completely change the number or order of inference mod-
ules. For example, it might be necessary to have a dynamic inference with arbitrary number of iterations over the
same module (modules). In this case, Runner can serve as a template: adding e.g. a cleaner between Simplifier and
SchemaGenerator would mean just copy-pasting members and methods currently associated to Simplifier .

2



References
[Aho96] H. Ahonen. Generating grammars for structured documents using grammatical inference methods. PhD thesis,

Department of Computer Science, University of Helsinki, Series of Publications A, Report A-1996-4, 1996.

[Bou] Ronald Bourret. Dtd parser, version 2.0. http://www.rpbourret.com/dtdparser/index.htm.

[gra] Graph visualization software. http://www.graphviz.org/.

[HMU01] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata Theory, Languages, and
Computation (2nd Edition). Addison-Wesley, 2001.

[HW07] Yo-Sub Han and Derick Wood. Obtaining shorter regular expressions from finite-state automata. Theor.
Comput. Sci., 370(1-3):110–120, 2007.

[JAX] Java architecture for xml binding. http://jaxb.java.net/.

[jun] Java universal network/graph framework. http://jung.sourceforge.net/.

[KMS+a] Michal Klempa, Mário Mikula, Robert Smetana, Michal Švirec, and Matej Vitásek. jInfer Architecture.

[KMS+b] Michal Klempa, Mário Mikula, Robert Smetana, Michal Švirec, and Matej Vitásek. jInfer AutoEditor automa-
ton visualization and editor module.

[KMS+c] Michal Klempa, Mário Mikula, Robert Smetana, Michal Švirec, and Matej Vitásek. jInfer Base Module De-
scription.

[KMS+d] Michal Klempa, Mário Mikula, Robert Smetana, Michal Švirec, and Matej Vitásek. jInfer BasicDTDExporter
Module Description.

[KMS+e] Michal Klempa, Mário Mikula, Robert Smetana, Michal Švirec, and Matej Vitásek. jInfer BasicIGG Module
Description.

[KMS+f] Michal Klempa, Mário Mikula, Robert Smetana, Michal Švirec, and Matej Vitásek. jInfer BasicRuleDisplayer
Module Description.

[KMS+g] Michal Klempa, Mário Mikula, Robert Smetana, Michal Švirec, and Matej Vitásek. jinfer javadoc. http:

//jinfer.sourceforge.net/javadoc.

[KMS+h] Michal Klempa, Mário Mikula, Robert Smetana, Michal Švirec, and Matej Vitásek. jInfer TwoStep simplifier
design and implementation.

[log] Apache log4jTM. http://logging.apache.org/log4j/.

[loo] org.openide.util.class lookup. http://bits.netbeans.org/dev/javadoc/org-openide-modules/org/

openide/modules/doc-files/api.html.

[mod] Module system api. http://bits.netbeans.org/dev/javadoc/org-openide-modules/org/openide/

modules/doc-files/api.html.

[Nor] Theodore Norvell. A short introduction to regular expressions and context free grammars. http://www.
engr.mun.ca/~theo/Courses/fm/pub/context-free.pdf.

[pro] Project sample tutorial. http://platform.netbeans.org/tutorials/nbm-projectsamples.html.

[VMP08] Ondřej Vošta, Irena Mlýnková, and Jaroslav Pokorný. Even an ant can create an xsd. In DASFAA’08: Pro-
ceedings of the 13th international conference on Database systems for advanced applications, pages 35–50, Berlin,
Heidelberg, 2008. Springer-Verlag.

[Vyh] Julie Vyhnanovská. Automatic construction of an xml schema for a given set of xml documents.

[wik] Regular expression. http://en.wikipedia.org/wiki/Regular_expression.

[xml] Xml validation api. http://download.oracle.com/docs/cd/E17802_01/webservices/webservices/

docs/1.6/api/javax/xml/validation/package-summary.html.

3


