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Required tokens cz.cuni.mff.ksi.jinfer.base.interfaces.inference.IGGenerator
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cz.cuni.mff.ksi.jinfer.runner.properties

1 Introduction
Runner it the module responsible for inference process. The fact that the inference consists of exactly 3 steps as
described in [KMS+a], is hard-wired in jInfer via this module.

2 Structure and operation
The main class responsible for the inference run is the Runner in cz.cuni.mff.ksi.jinfer.runner package. During
its construction it loads the properties of the currently running project (via the RunningProject class) to find out
which modules are selected for the inference. These modules are looked up and remembered - each new inference
run should therefore use a new instance of runner.

The only public method in Runner is, unsurprisingly, run(). This method will start the first step of the inference
process by invoking the selected IGGenerator ’s start() method, as described in [KMS+a, section 3.5.1]. Callback
methods finishedIGGenerator(), finishedSimplifier() and finishedSchemaGenerator() are responsible for in-
voking the following stages of inference, or in the latter case for presenting the resulting schema to the user and
terminating the inference process.

Invocation of every step in the process is encapsulated in a NetBeans task: this is the responsibility of runAsync()
method. First of all, this means that all the work is done in an asynchronous thread independent from the GUI. Sec-
ond, NBP presents each such task as a progressbar in the bottom right corner of the window, and allows the user
to cancel it. Should this happen, the currently running module detects this by checking for Thread.interrupted()
and responds by throwing an InterruptedException. Runner catches this exception, terminates the inference and
informs the user (interrupted() method).

Furthermore, should any unexpected exception occur while running one of the modules, this will get caught in
Runner again. Inference will be interrupted and user will be notified - this is the responsibility of unexpected()

method.

Finally, the generated schema is annotated in the end with a comment stating the current date and time, and the
modules used in the process. This is the responsibility of getCommentedSchema() method.
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2.1 Settings
Runner has NetBeans-wide settings determining what should happen after the schema is inferred and which rule
displayer should be used. The options panel along with all the logic is in the cz.cuni.mff.ksi.jinfer.runner.

options package.

2.2 Preferences
Runner naturally has project-wide preferences for selection of inference modules. The panel and its logic is in cz.

cuni.mff.ksi.jinfer.runner.properties package.

3 Extensibility
For certain inference algorithms it might be necessary to completely change the number or order of inference mod-
ules. For example, it might be necessary to have a dynamic inference with arbitrary number of iterations over the
same module (modules). In this case, Runner can serve as a template: adding e.g. a cleaner between Simplifier and
SchemaGenerator would mean just copy-pasting members and methods currently associated to Simplifier .
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