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The description of jInfer architecture will be divided into 3 main views: the data view, the process view and the
plaform view. The data view will commence by describing the data structures, namely representations of regular
expressions and XML elements, attributes and simple data. The notions of a rule and a grammar will be explained,
along with the finite state automata representation we use.

Afterwards the process of inference will be described, both from high-level and programmatic point of view.
Finally, we will look at jInfer as at an NetBeans Platform application consisting of a number of modules performing
their tasks and communicating together through a set of well-defined interfaces.

1 Package naming conventions
All packages start with cz.cuni.mff.ksi.jinfer. Afterwards is the short, normalized name of the NetBeans module
(e.g. base) and finally the package structure in this module (e.g. objects.utils). All in all, a package in the Base
module could look like cz.cuni.mff.ksi.jinfer.base.objects.utils.

2 Data view
2.1 Regular expressions
For general information on regular expressions, please refer to [wik], [HMU01]. All classes pertaining to regular
expressions can be found in the package cz.cuni.mff.ksi.jinfer.base.regexp. In jInfer, we use extended regular
expressions as they give us nicer syntax (and easier programming).

Regular expression is implemented as class Regexp<T> with supporting classes RegexpInterval and RegexpType.
Each Regexp<T> instance has a type of RegexpType enum.

• Lambda (λ) - empty string (also called ε in literature).

• Token - a letter of the alphabet.

• Concatenation - one or more regular expression in an ordered sequence. Eg. (a, b, c, d).

• Alternation - a choice between one or more regular expressions. Eg. (a|b|c|d).

• Permutation - shortcut for all possible permutations of regular expressions. Our notation is (a&b&c&d).

Type of regexp is in type member in class Regexp<T> and can be tested by calling methods isLambda(), isToken(),
isConcatenation(), isAlternation(), isPermutation().

Each Regexp<T> instance has one instance of RegexpInterval as member. Class RegexpInterval represents
POSIX-like intervals for expression.

• a{m,n} means a at least m-times, at most n-times.

• a{m, } means at least m-times (unbounded).
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Figure 1: Example tree for regular expression (a, b, ((c|d), e), f)

Interval can be either bounded (you have to set both lower and upper bound integers), or unbounded (you have to set
only lower bound). Testing interval value commonly follows this routine.

RegexpInterval i = r.getInterval();

if (i.isUnbounded()) {

print(i.getMin());

} else {

print(i.getMin(), i.getMax());

}

That is, first check interval for being unbounded, only if it is bounded, you can ask for maximum.
Using Java generics, Regexp<T> can represent regular expression over any alphabet. Only token regexps actually

hold instance of type T in member content.
Regular expression is in fact n-ary tree, for example expression (a, b, ((c|d), e), f) can be viewed as in fig. 1. We

implement this tree in a member of Regexp<T> class called children, which is of type List<Regexp<T>>. List contains
children of regexp: a node contains a list of child nodes in the tree view.

Regexp has to obey the following constraits.

• Type, children and interval have to be non-null references.

• When type is lamba, content and interval has to be null.

• When type is token, content has to be non-null.

• When type concatenation, alternation or permutation, content has to be null.

These constraits are checked by constructors, therefore the best way to construct new regexps is by using methods
getToken(), getConcatenation() etc.

Regexp instance is by default created as immutable, that is, once instantiated, you cannot add more children to list
of children, cannot change type, content etc. In special circumstances, one does not know future children of regexp at
the time of creation. This occurs mainly in input modules: while parsing XML data sequentially, one does not know
contents of element in time of handling start element event.

For these cases, special getMutable()method is implemented to obtain regexp with none of the members set. One
has to fill in all properties carefully and call setImmutable() aftewards. Proper usage should be one of following:

Regexp<T> r = Regexp.<T>getMutable();

r.setInterval(...);

r.setType(RegexpType.LAMBDA);

r.setImmutable();cz.cuni.mff.ksi.jinfer.base
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interface class NamedNode

ContentNode

extends

StructuralNode

extends

Attribute

implements

SimpleData

implements implements

Element

implements

Figure 2: How should interfaces and classes for XML representation look like in theory

Regexp<T> r = Regexp.<T>getMutable();

r.setInterval(...);

r.setType(RegexpType.TOKEN);

r.setContent(...)

r.setImmutable();

Regexp<T> r = Regexp.<T>getMutable();

r.setInterval(...);

r.setType(RegexpType.CONCATENATION);

r.addChild(...);

r.addChild(...);

r.addChild(...);

r.setImmutable();

Finally, regexp contains a useful method to obtain all leaves in the regexp tree. It is called getTokens() and it
recursively traverses tree returning list of leaves (token type regexps).

2.2 XML representation
XML data basically encompasses elements, text nodes (characters inside elements) and attributes. For maximum
generality, we decided to break apart these objects. We define three basic interfaces: NamedNode, StructuralNode and
ContentNode (see package cz.cuni.mff.ksi.jinfer.base.interfaces.nodes).

The first stands for a bare node in XML document tree, it has its name and context within the tree (path from root).
The latter two extend NamedNode interface. StructuralNode is for nodes which form structure of XML document tree:
elements and text nodes. ContentNode is for nodes that have content in XML documents: text nodes and attributes.
We have three classes: Element for elements, SimpleData for text nodes, Attribute for attributes (see package cz.

cuni.mff.ksi.jinfer.base.objects.nodes). In theory, the classes and interfaces would be layed out as in fig. 2

For even more generality in design, we decided to implement abstract classes in midlevel:

• AbstractNamedNode which implements methods from NamedNode interface to handle context, name and meta-
data (will discuss later in section 3.2),

• AbstractStructuralNode which implements only the task of deciding if instance is Element or SimpleData.

On the one hand, we are interested in the XML structure - for this reason we use isElement() and isSimpleData()

of AbstractStructuralNode. On the other hand, we want to access textual content and its type, for this reason we
use getContent() and getContentType() of ContentNode.

Finally, our interface/class model for representing XML nodes is drafted in fig. 3. Those who are brave enough
can look at fig. 4.

Class Element has two important members.
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interface class NamedNode

StructuralNode

extends

ContentNode

extends

Element

AbstractStructuralNode

extends

SimpleData

implements

extends

Attribute

implements

AbstractNamedNode

extends

implements

implementsextends

Figure 3: How are interfaces and classes for XML representation arranged in practice

• Regexp<AbstractStructuralNode> subnodes - representing the right side of a grammar rule,

• List<Attribute> attributes - representing all attributes in this element.

These two are filled in by import modules, processed further by inference (simplification) modules and finally ex-
ported by schema generator modules.

As in regular expressions, classes pertaining to XML nodes are by default immutable. For elements, it means no
adding of attributes and changing regexp reference (regexp instance itself is immutable as well). The same getMutab
le() principles and good usage practises hold for these classes.

Let’s have an example: the following XML document would be represented as tree in fig. 5.

<person name="john" surname="smith">

<info>

Some text

<note/>

</info>

<more/>

</person>

Although in example we present the whole document tree, input modules produce slightly different format (consist-
ing of rules).

2.3 Rules and grammars
jInfer and its documentation use extended context-free grammars[Nor]. Rules in such grammar are in the form

Left Hand Side (LHS) → Right Hand Side (RHS)

where LHS is a letter of the alphabet (token), RHS is a regular expression over this alphabet. Example would be

a → b, (c|d)∗

In jInfer each such rule is represented with an Element instance. In this representation, the Element itself is the LHS,
its subnodes are the RHS.

Another important notion is a grammar. A grammar consists of its rules, so in jInfer a grammar is just a collection
of Elements. Closely related term is Initial Grammar, which for us is a grammar consisting of rules with simple right
hand sides, i.e. just concatenations of tokens (even with no children, see fig. 5 again). Initial Grammar is produced
by Initial Grammar Generator.
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<<interface>>

NamedNode

+getContext(): List<String>

+getName(): String

+getMetadata(): Map<String, Object>

<<interface>>

ContentNode

getContentType(): String

getContent(): List<String>

extends

AbstractNamedNode

-context: List<String>

-name: String

-metadata: Map<String, Object>

#mutable: boolean

+getContext(): List<String>

+getName(): String

+setName(name: String)

+getMetadata(): Map<String, Object>

+isMutable(): boolean

+setImmutable()

+toString(): String

implements

<<interface>>

StructuralNode

+getType(): StructuralNodeType

+isElement(): boolean

+isSimpleData(): boolean

extends

< < e n u m > >

StructuralNodeType

+ELEMENT

+SIMPLE_DATA

Attribute

-contentType: String

-content: List<String>

+getContentType(): String

+getContent(): List<String>

+toString(): String

implements extends

AbstractStructuralNode

+<<abstract>> getType(): StructuralNodeType

+isElement(): boolean

+isSimpleData(): boolean

+toString(): String

extends implements

SimpleData

-contentType: String

-content: List<String>

+getType(): StructuralNodeType

+getContentType(): String

+getContent(): List<String>

+getMutable(): SimpleData

+setImmutable()

+toString(): String

implements

extends

Element

-subnodes: Regexp<AbstractStructuralNode>

-attributes: List<Attribute>

+getType(): StructuralNodeType

+getSubnodes(): Regexp<AbstractStructuralNode>

+getAttributes(): List<Attribute>

+getMutable(): Element

+setImmutable()

+toString(): String

extends

Figure 4: Class diagram for XML representing interfaces and classes
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Figure 5: XML document representation
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2.4 Nondeterministic Finite Automaton
We recommend skipping this section during the first reading as it describes advanced features.

For all inference algorithms based on merging states of NFA’s, our implementation of nondeterministic finite au-
tomaton might be interesting. Implementation consists of 4 classes (see package cz.cuni.mff.ksi.jinfer.base.

automaton).

• Automaton<T>

• Step<T>

• State<T>

• AutomatonCloner<A, B>

The implementation uses Java generics to represent symbol of alphabet. We denote T the Java type of that symbol.
Automaton uses equals() to compare symbols on transitions (when building prefix-tree automaton and when

merging states). If you are using strings, you’re just fine. With complicated objects, the first option is to make sure
that equivalent objects are properly tested in equals(). Second, maybe faster solution is to cluster objects into classes
of equivalence before inserting them into automaton. Then give automaton only cluster representant object (which
will use java Object.equals() with reference comparison) for each object encountered.

State Let’s begin with the smallest of classes, the State<T>. It represents automaton state, it has two integer mem-
bers: name and finalCount. Name clearly serves as name of state in visualization and to-string conversion. Final count
is for representing whether the state is final in automaton. The field is not true/false but integral to help algorithms
use statistics over automatons (how many times in XML input is this state final?).

Step Next we have Step<T> which stands for automaton transition. It has its source and destination states ref-
erences. Symbol accepted by using this transition is stored in acceptsSymbol member of generic type T. And finally
member useCount, which is integer stating how many times the transition was used when constructing prefix tree
automaton from input data. Simplifying algorithm can use this number for statistic purposes.

Automaton Automaton<T> class puts these together to form a nondeterministic finite automaton. It has reference to
initialState, it has newStateName integer value to assure unique state names inside one automaton (incrementing
every time new state is created). We use two maps to implement transition function (δ-function). One map of type
Map<State<T>, Set<Step<T>>> called delta represents mapping from state into set of all outgoing transitions from
state. Second is just reversed map, called reverseDelta, which holds all incoming transitions into state (for better
performance). There is only one instance of each step from one state to another. That instance is referenced in delta
map (on place of source state) and in reverse delta map (on place of destination state). Loops are no speciality, only
source = destination.

Automaton supports creation as a copy of another one (not reference copy, but deep copy expect of symbols), this
can be used when searching solution space to create more versions of automaton to edit. We implemented building
of prefix-tree automaton (PTA) in buildPTAOnSymbol() method. Create empty automaton and then call this method
for every input string of language. You will get PTA with useCounts and finalCounts set properly on steps/states.
The biggest thing we offer to researchers is state merging by simply calling mergeStates(state1, state2) method.
Method merges second state given into first one (or an overloaded version - all states in list into first one in list). All
{in|out}-transitions are redirected properly (or discarted as needed). Variables useCount and finalCount are updated
to sums of values from merged transitions/states.

To be able to refer to states that have already been merged (and thus have a different name), we use a map of renam-
ings. Lets take example automaton of fig. 6(a) (states are labeled [name|finalCount], steps by {symbol|useCount}).
One asks to merge states 3 and 4. State 3 then becomes final state with loop and state 4 disappears (fig. 6(b)). If then
one asks to merge states 2 and 4, automaton properly handles situation by knowing, that old state 4, was merged into
state 3, and merges states 2 and 3 (see fig. 6(c)). This can be useful in k, h−context and s, k−strings implementations
(find all context/strings, then supply list of states to merge and don’t bother with state names updates).
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[1|0] [2|0]
{a|1}

[3|0]
{a|1}

[4|1]
{a|1}

(a) Before merge.

[1|0] [2|0]
{a|1}

[3|1]
{a|1}

{a|1}

(b) After states 3 and 4 merged.

[1|0] [2|1]
{a|1}

{a|2}

(c) After states 2 and 4 merged.

Figure 6: Sample automaton.

AutomatonCloner Class AutomatonCloner<A, B> has one overloaded method convertAutomaton(). First version
accepts automaton and class implementing AutomatonClonerSymbolConverter<A, B> interface, and returns new au-
tomaton with same structure, but with symbols on transitions from alphabet of Java type B. Second version takes two
automatons, second one has to be empty (without initial state created), and symbol converter. It fills in second au-
tomaton to have same structure as first one, but with symbols of type B.

To fulfil symbol conversion, one have to provide implementation of AutomatonClonerSymbolConverter<A, B>

interface. Interface has one method.

B convertSymbol(A symbol);

Its purpose is to provide mapping from symbol over one domain to new symbols. Implementation has to be equals()
consistent, if in first automaton are two transitions with symbols a, b such that a.equals(b) == true, converter has
to produce new symbols that are equal.

3 Process view
The process by which jInfer infers the resulting schema from various inputs (inference process) is summarized by fig.
7. From the high-level viewpoint, it consists of three consecutive steps carried out by three different modules:

1. Initial Grammar (IG) generation: done by the Initial Grammar Generator (IGG) module, this is the process of
converting all of the inputs to IG representation. All documents, schemas and queries selected as input are
evaluated, simple rules are extracted and in the end sent to the next step.
For example, a trivial XML document

<person name="john" surname="smith">

<info>

Some text

<note/>

</info>

</person>

<more/>

<person>

<more/>

<more/>

<more/>

</person>

will translate into the following IG rules

person → info,more,more,more,more
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XML

Initial Grammar Generator

DTD XPath ...

Simplifier

Initial Grammar

Schema Generator

Simplified grammar

User input

DTD XSD ...

Figure 7: High-level view of the inference process

info → simple_data, note
note → empty_concatenation
more → empty_concatenation

person → more,more,more

more → empty_concatenation
more → empty_concatenation
more → empty_concatenation

2. Simplification: done by the Simplifier module, this is the process of simplifying, compressing or somehow com-
pactly describing the IG by a smaller number of (more complex) rules (exactly one rule for each element). User
interaction might be used in this step to help achieve better simplification. At the end of this step, all rules are
sent to the export step.
For example, previous rules for element person could be simplified to a single rule

person → info?,more{1, 3}

Rules for elements info, more and note after simplification will be:

info → simple_data, note
note → λ

more → λ

Note the lambda regular expressions for note and more. In Initial Grammar, all regexps are concatenations
(even empty), but in simplified grammar, if element have to be empty in schema, it has to have lambda regular
expresion as subnodes.

3. Schema export: done by the Schema Generator (SchemaGen) module, this is the process of actually creating the
resulting schema file from the simplified rules. Result of this step is a string representation of the schema, which
is sent back to the framework (and later displayed, saved, etc).
For previous simplifier rules, the resulting DTD would be:
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<!ELEMENT person (info?, more, more?, more?)>

<!ELEMENT info (#PCDATA | note)*>

<!ELEMENT note EMPTY>

<!ELEMENT more EMPTY>

+ attributes

For element person, even when simplified grammar specifies its occurence to at least once, at most 3 times, as
DTD has no such construct, export module have to do some magic. Situation is even worse for elements that con-
tain simple data inside simplified rule. Only way to express mixed content in DTD is to use (#PCDATA | note)*

construct. Even if regular expression is complicated, export module has to do this “flattening”.texmaker Lets
look on XSD output of same rules:

<xs:element name="person">

<xs:complexType>

<xs:sequence>

<xs:element name="info" minOccurs="0" maxOccurs="1">

<xs:complexType mixed="true">

<xs:sequence>

<xs:element name="note" minOccurs="1" maxOccurs="1">

<xs:complexType>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="more" minOccurs="1" maxOccurs="3"/>

<xs:complexType>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

+attributes

Important thing to note here is that all these steps are executed consecutively. That means, Simplifier is only started
after the IGG completely finished its work and returned IG to be simplified. Similarly, SchemaGen gets all the rules to
export at once, in one list.

3.1 Programmatic view
From developer’s point of view, inference modules are just properly annotated classes (see 4.1) implementing one of
the following interfaces (all found under cz.cuni.mff.ksi.jinfer.base.interfaces.inference)

• IGGenerator

• Simplifier

• SchemaGenerator

A nice way to name such a class is by adding -Impl to the name of implemented interface, for example Simplifier

Impl. Annotation required for the framework to recognize such a class as an inference module is the following

@ServiceProvider(service = <interface>.class)

for example

@ServiceProvider(service = Simplifier.class)

The most important method in each module is start, defined in each of the interfaces. This method is called by the
framework when the respective step of inference is to be executed. It has always two parameters: the actual input
data for the module, and a callback object to report to when this step is finished. We will look at both parameters now
in more detail.
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3.1.1 Module input

Each inference module takes the actual input data as the first parameter of its startmethod. The type of the argument
differs based on the inference module.

Simplifier and Schema Generator take grammar (see 2.3), in other words a list of Elements as input. In the first case,
this grammar is the Initial Grammar, in the second case it is the simplified grammar.

Initial Grammar Generator takes an object of type Input. This class encapsulates all the input files in 3 collections
of File: documents, schemas and queries. Enumerating these files provides IGG with access to all data it needs to
create Initial Grammar.

Initial Grammar has two formats:

• Only concatenations. This is the default format. All regular expressions coming from IGG have to be con-
catenations, even if they are empty. When importing XML documents this is just fine, because a document is
a positive example of language we are trying to identify. But while importing schemas, queries or other stuff
that can contain more information, it might be necessary to convert it somehow to concatenations. For example,
when importing DTD:

<!ELEMENT person (info?, more, more?, more?)>

<!ELEMENT info (#PCDATA | note)*>

<!ELEMENT note EMPTY>

<!ELEMENT more EMPTY>

Elements note and more are empty, but we cannot use lambda regexp. Import will use empty concatenation
instead. For element person, import module has to generate some positive examples of language generated by
regular expression (info?, more, more?, more?).
This is basically done by calling cz.cuni.mff.ksi.jinfer.base.interfaces.Expander interface method ex

pand(). One can implement own intelligent expander, or use our provided cz.cuni.mff.ksi.jinfer.basic

igg.expansion.ExpanderImpl.

• Complex regular expressions. Simplifier module running in current inference can indicate support for this
format by declaring capability Capabilities.CAN_HANDLE_COMPLEX_REGEXPS. Even then, import module is not
obliged to use it of course. But it is reasonable to do so, if imported file type gives more information than simple
concatenations (when importing schemas).
Initial Grammar can contain all regular expressions. If schema defines empty element, make its subnodes
lambda regexp. If schema defines element content as (a, b){2,7}(c | d), just construct that regexp. Empty
concatenations are also allowed - as they are positive examples in XML document input. It is simplifier’s re-
sponsibility to divide rules by import file formats (by using metadata described in 3.2) and to handle empty
concatenations from XML file import with complex regular expressions from other formats.

If you are writing import module, check if you can provide more information to simplifier from input file type by
using complex format. This interface division allows us to plug in old methods (accepting only XML input) to the
chain of inference, even with schema input files. It may be useful for method benchmarking too.

Simplified grammar has only one format and that is strict regular expression format. Empty concatenations, alter-
nations or permutations are not allowed. If element should be exported as empty, use lambda regexp as its subnodes.

3.1.2 Module output

Second parameter of each inference module’s startmethod is a callback object. There are 3 callback interfaces defined
in the cz.cuni.mff.ksi.jinfer.base.interfaces.inference package

• IGGeneratorCallback

• SimplifierCallback

• SchemaGeneratorCallback
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Each callback interface naturally belongs to the similarly named module interface. As their respective interfaces, also
callbacks define one crucial method: finished. Each inference module is responsible for invoking this method on the
callback it got as a parameter, after it has finished its work and has results to be passed on. Again, these 3 finished
methods have different arguments based on the inference module.

IGGeneratorCallback.finished() and SimplifierCallback.finished() have a grammar (Initial Grammar in
case of IGG) as their only argument.

SchemaGeneratorCallback.finished() has two Strings as arguments: schema is the actual string representation
of the resulting schema, extension is a file extension of the result (such as “dtd” or “xsd”) which the framework will
use when saving the result in a file.

3.1.3 Error handling

Because the run of each inference module is encapsulated in a try-catch block by the framework, it is safe to throw
any exception out of the start method: it will get logged, presented to the user and inference will stop. However, if
the module uses threads that could throw an exception, it is responsible for catching these exceptions and possibly
re-throwing them in the thread where start runs.

3.1.4 Interruptions

User running the inference might change his mind and try to stop this. For this reason, modules have to check for
this case in every time-consuming place such as long loops with the following code:

for (forever) {

if (Thread.interrupted()) {

throw new InterruptedException();

}

doStuff();

}

3.1.5 Runner

The part of framework responsible for actually gathering user input, running all modules one after another and pre-
senting the results is the Runner class in cz.cuni.mff.ksi.jinfer.runner package.

A new instance of Runner is constructed for each inference run. While being created, Runner loads the preferences
for current project and looks up user-selected inference modules. Also, callback objects pointing back to methods in
Runner are created. The inference process itself is then as follows

1. Selected IGG’s start is encapsulated with error/interruption handling and executed, passing Input and first
callback as parameters.

2. When IGG finishes, it invokes callback’s finish method, passing the IG as parameter.

3. This in turn causes Runner to encapsulate and execute Simplifier’s start, passing IG from the first callback and
the second callback as parameters.

4. When Simplifier finishes, it invokes callback’s finish method, passing the simplified grammar as parameter.

5. This again causes Runner to encapsulate and execute SchemaGen’s start, passing the simplified grammar from
the second callback and the third callback as parameters.

6. SchemaGen finishes and invokes the last callback’s finish, passing the resulting schema and its extension as
parameters.

7. Runner receives the resulting schema and based on preferences, saves it to a file, displays it, etc.
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Figure 8: Runner

13



3.2 Node metadata
To allow simple extensibility of rules, class AbstractNamedNode contains a string-addressed map called metadata that
can contain arbitrary object values.

At the present, jInfer modules use the following metadata, all defined in IGGUtils class:

• from.xml, filled in by BasicIGG module: means that this rule was created (originates from) from a XML docu-
ment.

• from.schema, filled in by BasicIGG and XSDImporter modules: means that this rule was created (originates from)
from a schema.

• from.query, filled in by BasicIGG and XSDImporter modules: means that this rule was created from a query.

• is.sentinel, filled in by BasicIGG and XSDImporter modules: when importing XML document, one can build
whole tree in memory (as in fig. 5) and then construct list of rules from it (thus saving memory). With schema
import however, one not only doesn’t know right side of rule in advance (solved by stack in XML import), but
right side can be defined anywhere in source file. To save complicated loading of whole schema, searching and
pairing elements thorough rules, nodes on right side of rule are created empty - holding only name of node.
Fact, that this node has no more information than it’s name and position on right side of rule is denominated
by labeling the node as sentinel.

• required, filled in by BasicIGG and XSDImporter modules: indicates that the attribute is required.

All of these metadata are of set/not set character (using Boolean.TRUE as value, but their presence effectively means
“true”).

3.3 Capabilities
From time to time, modules need a flow of certain information in completely opposite way to the usual inference:
they need to know what the following module can or cannot do.

For this reason, inference modules extend the Capabilities interface defining a single method: getCapabili

ties(). This method returns a list of strings representing the abilities, or “capabilities” of this module. An inference
module can query the capabilities of the next module in the inference chain by invoking the

RunningProject.getNextModuleCaps()

method to obtain the next module encapsulated in the Capabilities interface.
At the moment, only one capability is defined to be communicated across modules, more specifically between

IGGenerator and Simplifier. This is Capabilities.CAN_HANDLE_COMPLEX_REGEXPS meaning whether the Simplifier

accepts more complicated regular expressions than simple concatenations of tokens on its input.
Example of Capabilities usage taken from XSDImporter module:

// if the next module cannot handle complex regexps, help it by expanding our result

if (!RunningProject.getNextModuleCaps().getCapabilities()

.contains(Capabilities.CAN_HANDLE_COMPLEX_REGEXPS)) {

// lookup expander

Expander expander = Lookup.getDefault().lookup(Expander.class);

// return expanded

return expander.expand(parser.getRules());

}

// return not expanded rules

return parser.getRules();

4 Platform view
jInfer, being a NetBeans Platform application, is divided into multiple NetBeans Modules. It is very important to under-
stand that this division is in principle orthogonal to that naturally sketched in the previous chapters - theoretically,
the whole jInfer could be contained in a single NB module, because the framework uses Lookups to locate logical
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Figure 9: Module dependencies

modules. However, for the sake of organization, jInfer is split into several modules and most of the time there is a
strong correlation between logical units of jInfer and its NB modules.

A short overview of these modules and their functions follows. To get a deeper understanding of any of them,
please refer to its documentation. To get deeper understanding of how NBP modules work, their versions, dependen-
cies etc, refer to [mod].
Base modules:

• jInfer: not a NBP module in fact, but rather a module suite - the “root” NB project for the whole framework.

• Base: contains common data structures, interfaces and utility logic shared across all other modules.

Inference modules:

• Runner: as described in the section 3.1.5, this module encapsulates the inference process (including the fact that
inference consists of 3 phases as described before). Most important class: Runner.

• BasicIGG: this module contains an extensible implementation of IGGenerator. Basic version handles all XML-
typed input documents, DTD schemas and XPath queries. To find out more about the extensibility to handle
other outputs, refer to BasicIGG’s documentation.

• XSDImport: demonstrating BasicIGG’s extensibility, this is a base module for XSD input.

• XSDImportSAX: XSD input handling using SAX parser.

• XSDImportDOM: XSD input handling using DOM parser.

• TwoStepSimplifier: a Simplifier implementation. Implements [Aho96] merging state algorithm with basic han-
dling of attributes. Read the separated documentation of module.

• BasicDTDExporter: this is a SchemaGenerator implementation with output to DTD.

• BasicXSDExporter: this is a SchemaGenerator implementation with output to XSD.

Utility modules:

• BasicRuleDisplayer: module capable of displaying a grammar in a graphical way.

• TreeRuleDisplayer: more advanced version of the former using JUNG’s graphing capabilities.

• AutoEditor: encapsulation of an interactive finite state automaton editor.

• JUNG: wrapper module for the JUNG (see [jun]).

• Options: NBP specific: this module adds a jInfer category in NetBeans Options window.

• ProjectType: NBP specific: this module defines a jInfer project type, along with its input and output files, settings
etc.

• XPathFileType: NBP specific: this module teaches NetBeans to recognize a .xpath file extension.

The dependencies between all the modules are summarized in figure 9. Figure 10 shows modules implementing the
3 main inference interfaces described in 3.
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4.1 Lookups
Lookups are a part of NBP API, a way to achieve late-binding between code based on this platform. An important notion
is the one of a service provider. This is a class implementing an interface, annotated in the following way (shown on an
example from BasicDTDExporter).

@ServiceProvider(service = SchemaGenerator.class)

public class SchemaGeneratorImpl implements SchemaGenerator {

...

The @ServiceProvider annotation tells NBP that SchemaGeneratorImpl is to be registered among all providers of
the SchemaGenerator service (or interface).

To look up a service provider, or all of them, one can use the Lookups API in the following way.

Collection<SchemaGenerator> generators = Lookup.getDefault().lookupAll(SchemaGenerator.class);

for (SchemaGenerator g : generators) {

System.out.println(g.getName());

}

Call to Lookup.getDefault().lookupAll() will return a collection of all service providers registered to be providing
the SchemaGenerator interface. This collection can be walked in some way, and on one or more of service providers
methods can be called. We didn’t have to actually bind providers to logic that uses their services, NB Platform took
care of this for us.

See [loo] as the official documentation to lookup API.

4.2 Factory pattern
At this point it is important to understand that when using lookups this way, all service providers are kept as single-
tons. We ilustrate this behaviour on 11(a), user runs inference first time, classes are looked up and used. When user
clicks run button again, and same instances of classes are returned by lookups.

In case a provider needs to change its state during providing the service (and needs to be “fresh” each time it is
retrieved), there are two solutions:

• force each service providing class (submodule), to implement some sort of cleanup method, that would restart
it into fresh state and make it ready to use by another inference run,

• or create new instances of stateful classes in each inference run and make service providing classes (those which
NetBeans return by lookups) factories.

We decided for the latter approach (as ilustrated on fig. 11(b) It enables us not only to produce fresh class instance in
each inference run, but also factory classes implement obligatory module methods such as getName, getDescription
and so on, which are really same in each inference run. Each submodule is then defined by (at least) two interfaces.
One is the factory interface, like this one (example from TwoStepSimplifier:

public interface AutomatonSimplifierFactory extends

NamedModule, Capabilities, UserModuleDescription {

<T> AutomatonSimplifier<T> create();

}

Second is worker interface, in the example it is AutomatonSimplifier<T> interface.
This pattern is used thorough jInfer modules to divide module into submodules.
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(b) Factory solution of singleton lookup class problem

4.3 Tokens
An important topic related to NB modules and their dependencies is a notion of tokens. Imagine a situation where
module M needs someone else to provide a certain service S, but doesn’t care who will that be. It cannot declare a
direct dependency on a module containing this service provider, because it might not know such a module. Instead,
M declares a required token. Any module providing S will declare a provided token, which is a simple string (usually
fully qualified Java name of the interface representing S). Later, NBP will make sure that M can be installed in the
platform only if there is at least one module providing that specific token.

jInfer uses tokens in the following way: Runner, as the module encapsulating the inference process, and ProjectType
as an encapsulation of jInfer projects both require the following 3 tokens.

• cz.cuni.mff.ksi.jinfer.base.interfaces.inference.IGGenerator

• cz.cuni.mff.ksi.jinfer.base.interfaces.inference.SchemaGenerator

• cz.cuni.mff.ksi.jinfer.base.interfaces.inference.Simplifier

All inference modules declare their respective token as provided. This way it is ensured that jInfer will run only if
there is at least one implementation of each of the inference modules, regardless of the implementation itself.

Another use of tokens is cz.cuni.mff.ksi.jinfer.base.interfaces.RuleDisplayer representing a module pro-
viding a rule displayer. This token is provided by BasicRuleDisplayer and TreeRuleDisplayer, requested by BasicIGG and
TwoStepSimplifier.
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