
jInfer BasicIGG Module Description

Michal Klempa, Mário Mikula, Robert Smetana, Michal Švirec, Matej Vitásek
Advisors: RNDr. Irena Mlýnková, Ph.D., Martin Nečaský, Ph.D.

Praha, 2011

Target audience: developers willing to extend jInfer, specifically modify the way BasicIGG creates initial grammar
from input files, for example by adding support for a new schema language.

Responsible developer Matej Vitásek
Required tokens cz.cuni.mff.ksi.jinfer.base.interfaces.RuleDisplayer

Provided tokens cz.cuni.mff.ksi.jinfer.base.interfaces.inference.IGGenerator

Module dependencies Base
Public packages cz.cuni.mff.ksi.jinfer.basicigg.properties

1 Introduction
This is an extensible implementation of the IGGenerator inference interface. It is the only IG generator officialy
shipped with jInfer.
Make sure you understand the difference between the two types of initial grammar as described in [KMS+a].

2 Structure
The main class implementing IGGenerator inference interface and simultaneously registered as its service provider is
IGGeneratorImpl. In its start() method it enumerates all files in the input parameter (of type Input). For each file,
based on its extension the correct processor is selected, executed and returned rules are aggregated. Rules coming from
XML documents are verified to be simple grammar representation. After each file has been processed, the resulting
grammar is expanded if necessary and returned by invoking the finished() method of the callback argument. This
process is illustrated in figure 1.

3 Processors
A processor is a class capable of extracting IG from an arbitrary InputStream (usually encapsulating a file). Various
processors may handle generic XML, schemas like DTD, XSD or Schematron, query languages such as XPath, and so

Input BasicIGG InitialGrammar

XMLProcessor

Simple grammar

DTDProcessor

Expansion (?)

XPathProcessor ...

Figure 1: Process view of BasicIGG

1

on.
A processor has to be registered as a service provider of the Processor interface from Base module. Due to the nature
of NBP lookups, each processor is internally kept as a singleton, and should not use its inner state (refer to the chapter
Lookups in [KMS+a]). Note that the factory pattern is not used here (see [KMS+a, section 4.2]).
Each processor declares the class of inputs (documents, schemas, queries) and file extensions it is able to handle by
implementing methods getFolder(), getExtension() and processUndefined(). Refer to JavaDoc of these methods
for further details.

BasicIGG comes bundled with 3 processors: for generic XML documents, DTD schemas and XPath queries. Sup-
port for XSD queries is implemented in XSDImporter to demonstrate BasicIGG ’s extension capabilities.

3.1 XML processor
XML processor registers itself into document input folder, xml file extension and declares that it can process other
arbitrary file extensions.

SAX traversal is used to collect the rules; the relevant ContentHandler is the class TrivialHandler. The way it
works is following:
Every time a start of an element is encountered, a new Element is created along with its attributes. This new element
representation is then placed on the top of a stack. Every other element or simple data found until its ending tag is
created and attached to its subnodes. When an end of an element is encountered, the element currently on the top of
the stack is closed and declared to be a rule of the IG.
After reaching the end of the document, all IG rules are returned. Note that this approach creates simple initial gram-
mar.

3.2 DTD processor
DTD processor registers itself into schema input folder, dtd file extension and declares it cannot handle other file ex-
tensions.
To parse DTD files a 3rd party library is used: dtdparser ([Bou]). Translation from the object model in this library to
our own is handled mostly by DTD2RETranslator class.
Note that the initial grammar generated in this way is complex.

3.3 XPath processor
This is a rather naïve implementation of an XPath processor. It registers itself into query input folder, xpath file exten-
sion (text file containing one XPath query per line) and declares it cannot handle other file extensions.
To parse XPath queries, standard support present in JDK is used. The relevant XPathHandler is the XPathHandlerImpl
class.
While the exact process by which XPathHandlerImpl creates the IG from a series of XPath events is an interesting
coding exercise, its description is beyond the scope and requirements of this document.

4 Expansion
Expansion is used to convert complex regular expressions in initial grammar to simple ones (concatenations of tokens)
for simplifiers that can handle the simple form only. The process can be seen as breaking down a regular expression
into a set of words (positive examples) that are described by this regexp. Relevant interface encapsulating any im-
plementation of such an expander is Expander in Base . Reference implementation is ExpanderImpl in this module.
Note that even though this implementation is retrieved using lookups, jInfer bundles only one such implementation
and does not support choice among more of them. Anyone wishing to implement his own expander will thus have
to either remove jInfer’s implementation, or implement the usual module selection.

One interesting use case for expansion is simple adaptation of legacy inference methods. “Old” methods working
only with simple grammar can be used unchanged with “new” inputs - schemas.

In BasicIGG , only grammar coming from input schemas and queries is expanded, and this happens only if the
following module lacks the CAN_HANDLE_COMPLEX_REGEXPS.

2

4.1 ExpanderImpl internals
ExpanderImpl works recursively, and it will probably be best to explain it from bottom to top.

At this point, let’s denote a word over an alphabet typed (in Java generics sense) T as a List<T>. Following the
same logic, let’s denote a set of such words as List<List<T>>. Our aim while expanding will be to convert a regular
expression representing some node’s subnodes into a list of words that are described by this regexp. In this case, T
will be AbstractStructuralNode.

The first interesting function is ExpansionHelper.applyInterval(). It takes a list of words extracted from a
regexp (thus in the List<List<AbstractStructuralNode>> form) and a RegexpInterval, and creates a new list of words.
Applying the interval on each of the words in a heuristic sense. The behaviour depends on the type of the interval.

• Once: The resulting set of words is exactly the original set of words.

• Optional: Same as above, but an empty word is added to the resulting set (each word from input may or may not
occur - but one empty word is enough).

• General interval: Has a minimum and a maximum number of occurences. Theoretically, all counts in interval
[min,max] should be considered, but for practical reasons the following heuristic is employed: each word from
the input is duplicated1 first min, then max times and added to the result.

• Kleene star: Similar to the general interval and optional, the result contains an empty word. Then for each word
on input: this word and its 3× duplication is added to the result. Obviously, this is a heuristic approach again -
theoretically each word should be duplicated between 0 and ∞ times in the result.

• Kleene cross: Except for not including the empty word, this is the same case as Kleene star. Each input word is
duplicated 1 and 3 times in the result.

Understanding how intervals affect the expansion, it is time to move up a level, to describe how a regular expres-
sion is expanded. This is done in ExpanderImpl.unpackRE() performing a recursive descent into the regexp tree and
returning a set of words. Based on the regexp type, one of the following is performed.

• LAMBDA: Resulting word set contains one empty word.

• TOKEN: Resulting set contains a word with one letter: the content (an AbstractStructuralNode) of this token;
the interval of the regexp is applied on this word before returning it.

• ALTERNATION: First, all children of this alternation are recursively evaluated. Their respective words are ap-
pended in a list, this list has the regexp interval applied and is returned. Reasoning is the following: we are
trying to get all the words a regexp can produce. If the regexp is an alternation, any word that can be produced
by one of its children can be a word produced by the regexp itself.

• PERMUTATION: A heuristic is applied once again. Because there are n!ways to order children of a permutation,
only two are actually picked: the original order in which they appear, and reversal of this order. In both cases
the children are treated as if they we concatenation (and thus the following case is invoked) and appended in a
list. On this list the regexp interval is applied and the list is returned.

• CONCATENATION: This is by far the most complicated case. Let’s denote word sets produced by theN children
of the concatenation w1 . . . wN . Now, all words that could be produced by this concatenations correspond to
concatenations of form wa1wa2 . . . waN

for all possible combinations of indices ai, i ∈ {1 . . . N}. Number of such
words grows exponentially with N , therefore a heuristic approach has to be employed again.
In this case, consider m = maxi∈1...N |wi|. Now, m words will be constructed in the following way: in a for-
loop enumerating i ∈ {1 . . .m} the j-th part of this i-th word will be wimod|wj |. The method ExpanderImpl.

unpackConcat() illustrates this.

Now for the next part, a description of Element expansion. This is the content of ExpanderImpl.expandElement()
method. First, element’s subnodes are expanded as a regexp. For each word from this expansion a new Element is

1Duplicating a word abc N times results in a word abcabc . . . abc︸ ︷︷ ︸
N×

.

3

created: letters of this word are encapsulated in tokens, these tokens are put in a concatenation that constitutes subn-
odes of this new element. If the letter is an element itself, it is not recursively expanded - it is just declared to be a
sentinel (see [KMS+a, section 3.3]).

Finally, expanding a grammar means expanding each of its rules (elements) and returning the gathered rules
(elements).

5 Preferences
All settings provided by BasicIGG are project-wide, the preferences panel is in cz.cuni.mff.ksi.jinfer.basicigg.

properties package. It is possible to set the following flags.

• Flag to keep values of attributes found in XML documents - unchecking this saves memory during the inference
process, but loses all information about the attribute domain, which can lead to a less expressive schema.

• Flag to keep simple data values from XML documents - again, unchecking saves memory (potentially a lot, with
input files containing a lot of text). A drawback might again be in losing information that could be useful in
schema generation.

• Flag to stop on errors - if this flag is set, BasicIGG will interrupt the inference if it comes across an error while
extracting IG. Unsetting this flag allows BasicIGG to ignore these errors and retrieve as much IG as possible.

6 Data flow
Flow of data in this module is following.

1. IGGeneratorImpl walks over input files in a loop.

2. Each file gets processed by a processor based on its folder and extension.

3. Grammar coming from XML documents is checked to be simple.

4. If needed, grammar coming from schemas and queries is expanded.

5. Grammar (from now on called IG) is returned via a callback.

7 Extensibility
BasicIGG can be easily extended to support a new input type: just create a class implementing Processor, annotate
it as a service provider and implement any logic needed. XSDImporter is an example of this.

It is possible to replace the default Expander implementation, but as mentioned in 4, either the old implementation
must be removed or module selection must be introduced.

4

References
[Aho96] H. Ahonen. Generating grammars for structured documents using grammatical inference methods. PhD thesis,

Department of Computer Science, University of Helsinki, Series of Publications A, Report A-1996-4, 1996.

[Bou] Ronald Bourret. Dtd parser, version 2.0. http://www.rpbourret.com/dtdparser/index.htm.

[gra] Graph visualization software. http://www.graphviz.org/.

[HMU01] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata Theory, Languages, and
Computation (2nd Edition). Addison-Wesley, 2001.

[HW07] Yo-Sub Han and Derick Wood. Obtaining shorter regular expressions from finite-state automata. Theor.
Comput. Sci., 370(1-3):110–120, 2007.

[JAX] Java architecture for xml binding. http://jaxb.java.net/.

[jun] Java universal network/graph framework. http://jung.sourceforge.net/.

[KMS+a] Michal Klempa, Mário Mikula, Robert Smetana, Michal Švirec, and Matej Vitásek. jInfer Architecture.

[KMS+b] Michal Klempa, Mário Mikula, Robert Smetana, Michal Švirec, and Matej Vitásek. jInfer AutoEditor automa-
ton visualization and editor module.

[KMS+c] Michal Klempa, Mário Mikula, Robert Smetana, Michal Švirec, and Matej Vitásek. jInfer Base Module De-
scription.

[KMS+d] Michal Klempa, Mário Mikula, Robert Smetana, Michal Švirec, and Matej Vitásek. jInfer BasicDTDExporter
Module Description.

[KMS+e] Michal Klempa, Mário Mikula, Robert Smetana, Michal Švirec, and Matej Vitásek. jInfer BasicIGG Module
Description.

[KMS+f] Michal Klempa, Mário Mikula, Robert Smetana, Michal Švirec, and Matej Vitásek. jInfer BasicRuleDisplayer
Module Description.

[KMS+g] Michal Klempa, Mário Mikula, Robert Smetana, Michal Švirec, and Matej Vitásek. jinfer javadoc. http:

//jinfer.sourceforge.net/javadoc.

[KMS+h] Michal Klempa, Mário Mikula, Robert Smetana, Michal Švirec, and Matej Vitásek. jInfer TwoStep simplifier
design and implementation.

[log] Apache log4jTM. http://logging.apache.org/log4j/.

[loo] org.openide.util.class lookup. http://bits.netbeans.org/dev/javadoc/org-openide-modules/org/

openide/modules/doc-files/api.html.

[mod] Module system api. http://bits.netbeans.org/dev/javadoc/org-openide-modules/org/openide/

modules/doc-files/api.html.

[Nor] Theodore Norvell. A short introduction to regular expressions and context free grammars. http://www.
engr.mun.ca/~theo/Courses/fm/pub/context-free.pdf.

[pro] Project sample tutorial. http://platform.netbeans.org/tutorials/nbm-projectsamples.html.

[VMP08] Ondřej Vošta, Irena Mlýnková, and Jaroslav Pokorný. Even an ant can create an xsd. In DASFAA’08: Pro-
ceedings of the 13th international conference on Database systems for advanced applications, pages 35–50, Berlin,
Heidelberg, 2008. Springer-Verlag.

[Vyh] Julie Vyhnanovská. Automatic construction of an xml schema for a given set of xml documents.

[wik] Regular expression. http://en.wikipedia.org/wiki/Regular_expression.

[xml] Xml validation api. http://download.oracle.com/docs/cd/E17802_01/webservices/webservices/

docs/1.6/api/javax/xml/validation/package-summary.html.

5

