
jInfer AutoEditor Module Description

Michal Klempa, Mário Mikula, Robert Smetana, Michal Švirec, Matej Vitásek
Advisors: RNDr. Irena Mlýnková, Ph.D., Martin Nečaský, Ph.D.

Praha, 2011

Target audience: developers willing to extend jInfer, specifically alter displaying of automata .
Responsible developer Mário Mikula
Required tokens org.openide.windows.WindowManager

Provided tokens none
Module dependencies Base

JUNG
Public packages cz.cuni.mff.ksi.jinfer.autoeditor

cz.cuni.mff.ksi.jinfer.autoeditor.automatonvisualizer

cz.cuni.mff.ksi.jinfer.autoeditor.automatonvisualizer.layouts

cz.cuni.mff.ksi.jinfer.autoeditor.gui.component

1 Introduction
This is an implementation of a an automaton editor. Using JUNG library, it provides an API to display and modify
automata in an interactive mode. For more information on JUNG library, see [jun].

UML diagrams shown in this document are simplified to keep them readable. Simplification involves removing
unimportant class members, which are not mentioned in the text. Also, removing members of non-jInfer classes and
truncating string of inheritance that are not important for this document. For example, VisualizationViewer class
from JUNG library has many methods and does not extend JPanel class directly. However, in the UML diagram, it
does not have any methods and is shown to extend JPanel directly, because it is sufficient for understanding of this
document.

2 Structure
Structure of AutoEditor can be divided into following four main parts.

API API for displaying automaton in GUI.

Base classes Classes providing basic functionality that can be extended and combined to achieve desired visualiza-
tion of an automaton.

Derived classes Classes derived from the base classes that are used in existing modules and simultaneously serve as
examples.

Layout creation System for creating Layouts.

First, Layouts and use of base classes to create a visualization of an automaton will be described.

In case a generic class has a type parameter T, this has to be the same T that is used to parametrize jInfer automata.
JUNG classes usually need a type parameter for a state and for an edge. These should be then State<T> (for a state)
and Step<T> (for edge). Refer to [KMS+a] for more information on these classes and see 2.4.1 and 2.4.2 for source
code examples.

1

2.1 Layout
Layout is a JUNG interface responsible primarily for the representation of an automaton and positions of its states.
JUNG library provides several implementation of Layout interface. However, because none of them is convenient for
automatic automaton displaying, AutoEditor provides two additional implementations. Layout by Julie Vyhnanovska,
used in her master thesis and Layout which is using external Graphviz software.

Class providing creation of Layout instances is named LayoutHelperFactory.

2.1.1 Vyhnanovska Layout

As mentioned above, this Layout was implemented by Julie Vyhnanovska as a part of her master thesis (see [Vyh]). It
positions automaton states on a square grid. This Layout gives good results for relatively small automata (about 10
states or less) but for larger ones, the results are quite disarranged and confusing.

Source code resides in package cz.cuni.mff.ksi.jinfer.autoeditor.automatonvisualizer.layouts.

vyhnanovska.

2.1.2 Graphviz Layout

Graphviz Layout uses Graphviz, a third-party graph visualization software (see [gra]), to create positions of automa-
ton states. To use this Layout, Graphviz has to be installed and path to dot binary has to be set in options. This Layout
gives nice results even for large automata.

Automaton is transformed to the dot representation and the dot binary is invoked with this representation on input.
It processes the automaton and writes positions of its states to the standard output. The output is then parsed and an
instance of Layout is created using these positions.

Source code resides in package
cz.cuni.mff.ksi.jinfer.autoeditor.automatonvisualizer.layouts.graphviz.

2.1.3 LayoutHelperFactory

In project properties, it is possible to select a Layout to be used to display automata. LayoutHelperFactory is a class
providing just one static method responsible for creating instances of Layouts according to a selection in project prop-
erties.

This method has the following signature.

public static <T> Layout<State<T>, Step<T>> createUserLayout(

Automaton<T> automaton,

Transformer<Step<T>, String> edgeLabelTransformer)

The first argument is an automaton to create the layout from. The second, is a transformer to transform an instance
of automaton edge to its string representation, required by the Graphviz Layout.

Source code resides in package cz.cuni.mff.ksi.jinfer.autoeditor.automatonvisualizer.layouts.

2.1.4 How to create a new Layout

New Layouts can be implemented using the modular system. For information on system of modules, see [KMS+a]. To
create a new implementation of Layout interface, it is necessary to create a new class implementing LayoutFactory

interface (package cz.cuni.mff.ksi.jinfer.autoeditor.automatonvisualizer.layouts) and annotate it by the
following code.

@ServiceProvider(service = LayoutFactory.class)

Created implementation will be shown in project properties in the Layout selection.

2

JPanel

VisualizationViewer<State<T>, Step<T>>

-layout: Layout<State<T>, Step<T>>

+<<constructor>> VisualizationViewer(layout: Layout<State<T>, Step<T>>)

extends

Visualizer<T>

+<<constructor>> Visualizer(layout: Layout<State<T>, Step<T>>)

+saveImage(file: File, formatName: String)

+getSupportedImageFormatNames(): Set<String>

extends

AbstractComponent<T>

-visualizer: Visualizer<T>

#<<constructor>> AbstractComponent()

#<<abstract>> getAutomatonDrawPanel(): JPanel

#setVisualizer(visualizer: Visualizer<T>)

+getVisualizer(): Visualizer<T>

+waitForGuiDone()

+guiDone()

+guiInterrupt()

+guiInterrupted(): boolean

1

extends

PluggableVisualizer<T>

-graphMousePlugins: Set<GraphMousePlugin>

+<<constructor>> PluggableVisualizer(layout: Layout<State<T>, Step<T>>)

+addGraphMousePlugin(graphMousePlugin: GraphMousePlugin)

+removeGraphMousePlugin(graphMousePlugin: GraphMousePlugin)

+getGraphMousePlugins(): Set<GraphMousePlugin>

+replaceVertexLabelTransformer(vertexLabelTransformer: Transformer<State<T>, String>)

+replaceEdgeLabelTransformer(edgeLabelTransformer: Transformer<Step<T>, String>)

extends

Figure 1: Class diagram for the base classes.

2.2 Base classes
This section describes classes implementing basic common functionality that are supposed to be extended to create
a new suitable visualization of automata for a particular method of inference. The new visualization may involve a
brand new GUI panel with buttons of various functions. For example, user interaction, like selecting states or edges,
and others.

Two main classes representing the visualization of an automaton are Visualizer and AbstractComponent. Visualizer
is a graphical representation of automaton and AbstractComponent is a panel (extends JPanel) containing
the Visualizer which will be displayed in GUI.

2.2.1 Visualizer

Visualizer class in cz.cuni.mff.ksi.jinfer.autoeditor.automatonvisualizer package extends JUNG
VisualizationViewer class thus it inherits all its methods and adds support for saving contained automaton to an
image file. Relevant methods are saveImage() and getSupportedImageFormatNames(). However, to save an image
of an automaton, it is not necessary to call this methods directly. AutoEditor GUI contains button to save an image
of displayed automaton. For information on how to to this, see 2.5.

Constructor has one argument, an instance of Layout interface created from an automaton, typically by Layout-

HelperFactory (see 2.1.3).

3

2.2.2 PluggableVisualizer

PluggableVisualizer class in cz.cuni.mff.ksi.jinfer.autoeditor.automatonvisualizer package is an exten-
sion of Visualizer class, which primarily provides an easy way to plug graph mouse plugins.

Graph mouse plugins are classes implementing JUNG GraphMousePlugin interface and their purpose is to enhance
Visualizer with mouse support.

By default, instance of PluggableVisualizer is constructed with two plugins enabled. They are ScalingGraph-

MousePlugin, providing zooming functionality, and TranslatingGraphMousePlugin, providing translation of the dis-
played automaton in the x and y direction. In most cases these plugins are useful, but otherwise, they can be removed
using methods getGraphMousePlugins() and removeGraphMousePlugin().

Public (not inherited) methods of PluggableVisualizer are the following. Their purpose is clear from their
names, for details please see their JavaDoc.

• addGraphMousePlugin()

• removeGraphMousePlugin()

• getGraphMousePlugins()

• replaceVertexLabelTransformer()

• replaceEdgeLabelTransformer()

2.2.3 AbstractComponent

AbstractComponent class in cz.cuni.mff.ksi.jinfer.autoeditor.gui.component package is a representation of
GUI panel containing an instance of Visualizer class for some automaton. It is inherited from JPanel class, thus
provides JPanel’s method and behaviour. In addition, it provides the following methods.

• setVisualizer() - Protected setter of Visualizer. It is defined protected because extensions of this class may
want to declare this setter with argument type that extends Visualizer class.

• getVisualizer() - Getter of Visualizer.

• waitForGuiDone() - Suspends its thread until method guiDone is called on this instance. Do not call this method
directly, it is called by AutoEditor . For more information, see 2.2.4.

• guiDone() - Wakes up this instance from a suspended state. For detailed description, see 2.2.4.

• guiInterrupt() - Called when AutoEditor ’s tab is closed to propagate information about terminating of infer-
ence to a caller of AutoEditor . There is no need to call this method directly.

• guiInterrupted() - Checks if AutoEditor GUI was terminated by guiInterrupt() method or regularly
(guiDone() method or GUI was not waiting for user interaction). Again, there is no need to call this method
directly, it is called by AutoEditor . For details, see 2.5.

Beside those methods, AbstractComponent has one abstract method, named getAutomatonDrawPanel().

Purpose of this class is to be extended to create own GUI panel, which displays some automaton using a sup-
plied instance of Visualizer. Method getAutomatonDrawPanel() is meant to be overridden to return an instance of
JPanel, in which the Visualizer is to be drawn.

Programmer implementing an extension of AbstractComponent is not forced to place the Visualizer on his own.
It is just needed to create JPanel and define getAutomatonDrawPanel() method to return this JPanel. AutoEditor
will take care of placing and displaying the Visualizer in the returned JPanel.

Visualizer is not set in constructor, because it is often desired to subsequently display several different automata
(Visualizers) in the same panel. In this case, it is not needed to create a new instance of AbstractComponent for each
Visualizer, but subsequently calling setVisualizer() method using one instance of AbstractComponent.

4

2.2.4 AbstractComponent user interactivity support

If some kind of user interactivity is desired, AbstractComponent is the right place to implement it.

To display the component in GUI and wait for some user action, we use waitForGuiDone() method. After dis-
playing the component, calling this method suspends the running thread, thus code execution of a caller module is
stopped at the place of this call. However, since GUI is ran in another thread, the user is able to interact with the panel
(component).
Do not call method waitForGuiDone() directly! It is called by AutoEditor when displaying the component by
AutoEditor API method named drawComponentAndWaitForGUI(). For more information on AutoEditor API, see
2.3.

Method important to the programmer extending AbstractComponent is called guiDone(). This method wakes up
the thread suspended in waitForGuiDone() method and the programmer is responsible for calling it. Typically, it is
called upon some user action like a button click, vertex pick or other GUI event.
After calling of guiDone() method, code execution of the caller module is resumed, and holding instance of the
AbstractComponent it is able to retrieve results of user interaction, saved in its state.

For examples of user-interactive component, see 2.4.1 and 2.4.2.

2.3 API
AutoEditor API is pretty simple. Package cz.cuni.mff.ksi.jinfer.autoeditor contains class AutoEditor with
three public static methods.

• drawComponentAsync() - Displays given AbstractComponent asynchronously in a GUI thread and immediately
returns. Use this method to just display automaton, without any user interaction and without waiting for any
external event. This method does not support it.

• drawComponentAndWaitForGUI() - Displays given AbstractComponent in a GUI thread, while the caller thread
is suspended until guiDone() method of AbstractComponent() is called. This method can wait for GUI events
and thus is convenient for user interaction. How to achieve this is described in detail in 2.2.4.

• closeTab() - Closes AutoEditor ’s GUI tab and interrupts inference, if running.

For examples of API usage, see 2.4.1 and 2.4.2.

2.4 Derived classes
This section describes classes derived from the base classes used in Two Step Simplifier module to display au-
tomata. This classes may also serve as examples of base classes extensions.

2.4.1 StatePickingComponent

StatePickingComponent (extensions of abstractComponent) alongside with StatePickingVisualizer (extension of
PluggableVisualizer) provides possibility to pick one automaton state in GUI and immediately return to the calling
code, which can retrieve the picked state.

StatePickingVisualizer is a trivial extension of PluggableVisualizer. It has no additional methods. Its con-
structor has several additional arguments. Their description follows.

public StatePickingVisualizer(

Layout<State<T>, Step<T>> layout,

Transformer<Step<T>, String> edgeLabelTransformer,

StatePickingComponent<T> component,

State<T> superinitialState,

State<T> superfinalState)

• layout - Instance of Layout which will be provided to the constructor of parent Visualizer class.

5

• edgeLabelTransformer - Transformer to convert automaton edges to their string representations.

• component - Instance of StatePickingComponent to call guiDone() method on, when a state is picked.

• superinitialState and superfinalState - Superinitial and superfinal states as we want to distinguish these
states in displayed automaton.

Upon construction, it just adds VertexPickingGraphMousePlugin to the plugins of PluggableVisualizer. Pur-
pose of this plugin is to allow user to pick some state of automaton and then call guiDone() method on instance of
AbstractComponent. For description of guiDone() method, see 2.2.3.

StatePickingComponent provides the following additional methods.

• setVisualizer() - Setter for Visualizer restricted to accept instances of StatePickingVisualizer class to
prevent misuse.

• getPickedState() - After displaying the component using drawComponentAndWaitForGUI() API method (see
2.3), this method retrieves the user picked automaton state.

• setLabel() - Sets text of a component label. The label can be used to communicate some information to user,
for example instructions.

Source codes of StatePickingComponent resides in package cz.cuni.mff.ksi.jinfer.autoeditor.gui.compo

nent, StatePickingVisualizer in cz.cuni.mff.ksi.jinfer.autoeditor.automatonvisualizer and VertexPick

ingGraphMousePlugin in cz.cuni.mff.ksi.jinfer.autoeditor.automatonvisualizer.graphmouseplugins.

Example of usage follows.

Transformer<Step<Regexp<T>>, String>

transformer = new Transformer<Step<Regexp<T>>, String>() {

@Override

public String transform(Step<Regexp<T>> step) {

StringBuilder sb = new StringBuilder();

sb.append("{");

sb.append(symbolToString.toString(step.getAcceptSymbol()));

sb.append("|");

sb.append(String.valueOf(step.getUseCount()));

sb.append("}");

return sb.toString();

}

};

State<Regexp<T>> removeState;

StatePickingComponent<Regexp<T>> component = new StatePickingComponent<Regexp<T>>();

Layout<State<T>, Step<T>> layout =

LayoutHelperFactory.createUserLayout(automaton, transformer);

StatePickingVisualizer<Regexp<T>>

visualizer = new StatePickingVisualizer<Regexp<T>>(layout,

transformer,

component,

automaton.getSuperInitialState(),

automaton.getSuperFinalState());

component.setVisualizer(visualizer);

do {

AutoEditor.drawComponentAndWaitForGUI(component);

removeState = component.getPickedState();

if ((removeState.equals(automaton.getSuperFinalState()))

6

JPanel

VisualizationViewer<State<T>, Step<T>>

extends

Visualizer<T>

extends

AbstractComponent<T>
1

extends

PluggableVisualizer<T>

extends

StatePickingVisualizer<T>

extends

StatesPickingVisualizer<T>

extends

StatePickingComponent<T>

-askUser: boolean

+<<constructor>> StatePickingComponent()

+setVisualizer(visualizer: StatePickingVisualizer<T>)

+getAutomatonDrawPanel(): JPanel

+getPickedState(): State<T>

+setLabel(text: String)

extends

1

StatesPickingComponent<T>

-askUser: boolean

+<<constructor>> StatesPickingComponent()

+setVisualizer(visualizer: StatesPickingVisualizer<T>)

+shallAskUser(): boolean

+getAutomatonDrawPanel(): JPanel

+getPickedStates(): List<State<T>>

+setLabel(text: String)

extends

Figure 2: Class diagram for the derived classes, not showing members of classes from figure 1 to keep this diagram
simple. Also not showing signatures of constructors of StatePickingVisualizer and StatePickingVisualizer for their
excessive length.

|| (removeState.equals(automaton.getSuperInitialState()))) {

component.setLabel("Do not select superInitial and superFinal states.");

continue;

}

return removeState;

} while (true);

2.4.2 StatesPickingComponent

Classes StatePickingComponent and StatesPickingVisualizer are similar to the classes described in the previous
section. Purpose of these is to provide picking of multiple automaton states.

StatesPickingVisualizer is an extension of PluggableVisualizer and upon its construction it adds Vertices-
PickingGraphMousePlugin to the graph mouse plugins. With this plugin used, user can pick and unpick automaton
states separately, or pick several states at once by dragging rectangular selection box over states. Main difference
compared to the VertexPickingGraphMousePlugin is that VerticesPickingGraphMousePlugin does not call compo-
nent’s guiDone() method.

7

Figure 3: Screenshot of AutoEditor GUI

Signature of constructor and description of arguments follow.

public StatesPickingVisualizer(

Layout<State<T>, Step<T>> layout,

Transformer<Step<T>, String> edgeLabelTransformer)

• layout - Instance of Layout which will be provided to the constructor of parent Visualizer class.

• edgeLabelTransformer - Transformer to convert automaton edges to their string representations.

StatesPickingComponent is almost the same as StatePickingComponent but it contains two extra GUI controls.
“Continue” button and “Don’t ask me anymore to select states to be merged” checkbox. The button is supposed to
be clicked when user picked all desired states and it will cause calling of component’s guiDone() method (see 2.2.3).
State of the checkbox can be retrieved by the calling code and the caller is supposed to stop showing this component
in the current inference process.

Methods of StatesPickingComponent are the following.

• setVisualizer() - Setter for Visualizer restricted to accept instances of StatesPickingVisualizer class to
prevent misuse.

• shallAskUser() - Retrieves state of the checkbox.

• getPickedStates() - After displaying the component using drawComponentAndWaitForGUI() API method (see
2.3), this method retrieves the list of user picked automaton states. In the case that none of automaton states
was picked, it returns an empty list.

• setLabel() - Sets text of the component label. The label can be used to communicate some information to the
user, for example instructions.

8

Source codes of StatesPickingComponent reside in package cz.cuni.mff.ksi.jinfer.autoeditor.gui.compo

nent, StatesPickingVisualizer in cz.cuni.mff.ksi.jinfer.autoeditor.automatonvisualizer and Vertices-

PickingGraphMousePlugin in cz.cuni.mff.ksi.jinfer.autoeditor.automatonvisualizer.graphmouseplugins.

Example of usage follows.

Automaton<T> simplify(Automaton<T> inputAutomaton,

SymbolToString<T> symbolToString,

String elementName) {

if (!askUser) {

return inputAutomaton;

}

List<State<T>> mergeLst;

Transformer<Step<T>, String> transformer = new Transformer<Step<T>, String>() {

@Override

public String transform(Step<T> step) {

StringBuilder sb = new StringBuilder();

sb.append("{");

sb.append(symbolToString.toString(step.getAcceptSymbol()));

sb.append("|");

sb.append(String.valueOf(step.getUseCount()));

sb.append("}");

return sb.toString();

}

};

Boolean selectTwo = false;

do {

Layout<State<T>, Step<T>>

layout = LayoutHelperFactory.createUserLayout(inputAutomaton, transformer);

StatesPickingVisualizer<T> visualizer =

new StatesPickingVisualizer<T>(layout, transformer);

StatesPickingComponent<T> panel = new StatesPickingComponent<T>();

panel.setVisualizer(visualizer);

if (selectTwo) {

panel.setLabel("Automaton for element <" + elementName

+ ">. Please select states to be merged and click continue."

+ " Select at least 2 states.");

} else {

panel.setLabel("Automaton for element <" + elementName

+ ">. Please select states to be merged and click continue.");

}

AutoEditor.drawComponentAndWaitForGUI(panel);

mergeLst = panel.getPickedStates();

if ((!BaseUtils.isEmpty(mergeLst)) && (mergeLst.size() >= 2)) {

inputAutomaton.mergeStates(mergeLst);

selectTwo = false;

} else if (mergeLst.size() < 2) {

selectTwo = true;

}

if (!panel.shallAskUser()) {

9

askUser = false;

break;

}

} while (!BaseUtils.isEmpty(mergeLst));

return inputAutomaton;

}

2.5 GUI
As shown in figure 3, AutoEditor ’s panel is placed in a tab of the editor window. It consists of two buttons, horizontal
line below them and a panel to place an extension of AbstractComponent (see 2.2.3). Class representing this panel is
called AutoEditorTopComponent and resides in cz.cuni.mff.ksi.jinfer.autoeditor.gui.topcomponent package.

Buttons have labels “Save as Image” and “Show Settings”. Pushing the first one will raise a dialog box to save
currently displayed automaton to an image file. Set of supported image formats depends on installed JRE. The second
one will open an AutoEditor tab in NetBeans options. For description of the settings, see section 2.6.

2.6 Settings
All settings provided by AutoEditor are NetBeans-wide. The options panel along with all the logic is in the cz.cuni.
mff.ksi.jinfer.autoeditor.optionspackage. Available options include setting the color of the background, colors
and shapes of some special types of automaton states.

To have some effect, these settings need to be implemented by extensions of Visualizer class. For examples,
please see the source codes of StatePickingVisualizer and StatesPickingVisualizer classes.

10

References
[Aho96] H. Ahonen. Generating grammars for structured documents using grammatical inference methods. PhD thesis,

Department of Computer Science, University of Helsinki, Series of Publications A, Report A-1996-4, 1996.

[Bou] Ronald Bourret. Dtd parser, version 2.0. http://www.rpbourret.com/dtdparser/index.htm.

[gra] Graph visualization software. http://www.graphviz.org/.

[HMU01] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata Theory, Languages, and
Computation (2nd Edition). Addison-Wesley, 2001.

[HW07] Yo-Sub Han and Derick Wood. Obtaining shorter regular expressions from finite-state automata. Theor.
Comput. Sci., 370(1-3):110–120, 2007.

[JAX] Java architecture for xml binding. http://jaxb.java.net/.

[jun] Java universal network/graph framework. http://jung.sourceforge.net/.

[KMS+a] Michal Klempa, Mário Mikula, Robert Smetana, Michal Švirec, and Matej Vitásek. jInfer Architecture.

[KMS+b] Michal Klempa, Mário Mikula, Robert Smetana, Michal Švirec, and Matej Vitásek. jInfer AutoEditor automa-
ton visualization and editor module.

[KMS+c] Michal Klempa, Mário Mikula, Robert Smetana, Michal Švirec, and Matej Vitásek. jInfer Base Module De-
scription.

[KMS+d] Michal Klempa, Mário Mikula, Robert Smetana, Michal Švirec, and Matej Vitásek. jInfer BasicDTDExporter
Module Description.

[KMS+e] Michal Klempa, Mário Mikula, Robert Smetana, Michal Švirec, and Matej Vitásek. jInfer BasicIGG Module
Description.

[KMS+f] Michal Klempa, Mário Mikula, Robert Smetana, Michal Švirec, and Matej Vitásek. jInfer BasicRuleDisplayer
Module Description.

[KMS+g] Michal Klempa, Mário Mikula, Robert Smetana, Michal Švirec, and Matej Vitásek. jinfer javadoc. http:

//jinfer.sourceforge.net/javadoc.

[KMS+h] Michal Klempa, Mário Mikula, Robert Smetana, Michal Švirec, and Matej Vitásek. jInfer TwoStep simplifier
design and implementation.

[log] Apache log4jTM. http://logging.apache.org/log4j/.

[loo] org.openide.util.class lookup. http://bits.netbeans.org/dev/javadoc/org-openide-modules/org/

openide/modules/doc-files/api.html.

[mod] Module system api. http://bits.netbeans.org/dev/javadoc/org-openide-modules/org/openide/

modules/doc-files/api.html.

[Nor] Theodore Norvell. A short introduction to regular expressions and context free grammars. http://www.
engr.mun.ca/~theo/Courses/fm/pub/context-free.pdf.

[pro] Project sample tutorial. http://platform.netbeans.org/tutorials/nbm-projectsamples.html.

[VMP08] Ondřej Vošta, Irena Mlýnková, and Jaroslav Pokorný. Even an ant can create an xsd. In DASFAA’08: Pro-
ceedings of the 13th international conference on Database systems for advanced applications, pages 35–50, Berlin,
Heidelberg, 2008. Springer-Verlag.

[Vyh] Julie Vyhnanovská. Automatic construction of an xml schema for a given set of xml documents.

[wik] Regular expression. http://en.wikipedia.org/wiki/Regular_expression.

[xml] Xml validation api. http://download.oracle.com/docs/cd/E17802_01/webservices/webservices/

docs/1.6/api/javax/xml/validation/package-summary.html.

11

